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Av. Engenheiro Eusébio Stevaux, 823 – Santo Amaro, São Paulo – CEP 04696-000 – SP – Brasil

alebencz,ezefranca.br,colecionador.gabriel,talescpadua,(@gmail.com)

Resumo

No modelo que a Danielle postou não tinha resumo, então
confirmem para saber se precisa ou não. Morphological
pattern spectra computed from granulometries are frequen-
tly used to classify the size classes of details in textures and
images. An extension of this technique, which retains infor-
mation on the spatial distribution of the details in each size
class is developed. Algorithms for computation of these
spatial pattern spectra for a large number of granulometries
on binary images are presented.

1. Introducão

A importância do assunto deve ser destacada resumida-
mente.

GRANULOMETRIES are ordered sets of morphological
openings or closings, each of which removes image

details below a certain size. These can be used for texture
analysis through the use of pattern spectra, which show
how the number of foreground pixels in the image chan-
ges as a function of the size parameter [3]. A drawback of
the classical definition of pattern spectra is that spatial in-
formation is not included in a pattern spectrum as shown
below. In this paper, spatial pattern spectra are developed
which retain information on the distribution of these details
at different scales.

Figura 1: Parts (a) through (c) show three images con-
sisting of squares of different sizes; (d) shows the pattern
spectra, denoting the number of foreground pixels removed
by openings by reconstruction by λ× λ squares. No granu-
lometry is capable of separating the patterns, because the
only differences between the images lie in the distributions
of the connected components.

2. Objetivos

Dar uma ideia compacta da metodologia ou forma de abor-
dagem da pesquisa, bem como o projeto foi desenvolvido.

Let binary images X and Y be defined as a subset of the
image domain M ⊂ Zn or Rn (usually n = 2).
Definition 1 A binary granulometry is a set of operators
{αr} with r from some ordered set Λ (usually Λ ⊂ R or
Z), with the following three properties

αr(X) ⊂ X (1)
X ⊂ Y ⇒ αr(X) ⊂ αr(Y ) (2)

αr(αs(X)) = αmax(r,s)(X), (3)

for all r, s ∈ Λ.
Definition 2 The pattern spectrum sα(X) obtained by ap-
plying granulometry {αr} to a binary image X is defined
as

(sα(X))(u) = −∂A(αr(X))

∂r

∣∣∣∣
r=u

(4)

in which A(X) is a function denoting the Lebesgue measure
in Rn.
In the case of discrete images, and with r ∈ Λ ⊂ Z, this
differentiation reduces to

(sα(X))(r) = #(αr(X) \ αr+(X)) (5)
= #(αr(X))−#(αr+(X)), (6)

with r+ = min{r′ ∈ Λ|r′ > r}, and #(X) the numnber of
elements of X.
The opening transform [5] ΩX of a binary image X for a
granulometry αr is

ΩX(x) = max{r ∈ Λ|x ∈ αr(X)} (7)

The pattern spectrum of a binary image X using granulo-
metry {αr} is the histogram of ΩX obtained with the same
size distribution [5], disregarding the bin for grey level 0.

Figura 2: Opening transform with {αr} as in Fig. 1: (left)
original image; (right) opening transform (contrast stretched
for clarity).

3. Metodologia

Dar uma ideia compacta da metodologia ou forma de abor-
dagem da pesquisa, bem como o projeto foi desenvolvido.
Pattern spectra only retain the amount of detail present
at scale r. This can be amended by computing some
parameterization of the spatial distribution in an image
αr(X) \ αr+(X) as a function of r.

Definition 3 Let M(X) be some parameterization of the
spatial distribution of detail in the image X. The spatial
pattern spectrum SM,α is then defined as

(SM,α(X))(r) = M(αr(X) \ αr+(X)). (8)

An obvious parameterization of the spatial distribution is th-
rough the use of moments. Focusing on the case of 2-D
binary images, the moment mij of order ij of an image X
is given by

mij(X) =
∑

(x,y)∈X
xiyj. (9)

The spatial moment spectrum Smij,α of order ij is

(Smij,α(X))(r) = mi,j(αr(X) \ αr+(X)). (10)

For i = 0 and j = 0 we obtain the standard pattern spec-
trum. For each r, (Smij,α(X))(r) is just the moment of an
image, therefore, derived parameters such as coordina-
tes of the centre of mass, (co-)variances, skewness and
kurtosis of the distribution of details at each scale can be
computed easily. We can then define pattern mean spec-
tra, pattern (co-)variance spectra, pattern kurtosis spectra,
etc. The pattern mean-x and variance-x spectra (Sx̄,α and
Sσ(x),α) are defined as:

Sx̄,α =
Sm10,α

Sm00,α
(11)

and

Sσ(x),α =

√
Sm20,α

Sm00,α
− Sx̄,α. (12)

These two are shown in Figures 3 and 4. Note that these
definitions hold only where (Sm00,α(f ))(r) 6= 0. For all other
values of r they will be defined as zero. Further post-
processing can be done to compute central moments and
moment invariant from pattern moment spectra [1, 2].

4. Resultados e Discussão

Verificar os principais resultados obtidos de acordo com os
objetivos propostos.

Nacken [5] derived an algorithm for computation of pat-
tern spectra for granulometries based on openings by discs
of increasing radius for various metrics, using the opening
transform. After the opening transform has been computed,
it is straightforward to compute the pattern spectrum:
• Set all elements of array S to zero
• For all x ∈ X increment S[ΩX(x)] by one.

To compute the pattern moment spectrum, the only thing
that needs to be changed is the way S[ΩX(x)] is incremen-
ted. As shown in Algorithm 1.

• Set all elements of array S to zero
• For all (x, y) ∈ X increment S[ΩX(x, y)] by xiyj.

Algorithm 1: Algorithm for computation of pattern mo-
ment spectrum of order ij.

This algorithm can readily be adapted to other granulome-
tries, simply by computing the appropriate opening trans-
form.

Figura 3: The opening transform using city-block metric:
(a) opening transform of Fig. 1(c); (b) pattern spectrum; (c)
pattern variance-x; (d) variance-y spectra.

Figura 4: Pattern mean-x (top) and variance-x (bottom)
spectra: the three collumns show spectra for Fig. 1(a), (b)
and (c) from left to right respectively. Unlike the standard
pattern spectra, these spatial pattern spectra can distin-
guish the three images.

5. Conclusão

Sitting on a corner all alone, staring from the bottom of his
soul, watching the night come in from the window
It’ll all collapse tonight, the fullmoon is here again In sick-
ness and in health, understanding so demanding It has no
name, there’s one for every season Makes him insane to
know
Running away from it all ”I’ll be safe in the cornfields”, he
thinks Hunted by his own, again he feels the moon rising on
the sky
Find a barn which to sleep in, but can he hide anymore
Someone’s at the door, understanding too demanding Can
this be wrong, it’s love that is not ending Makes him insane
to know
She should not lock the open door (Run away, run away, run
away) Fullmoon is on the sky and He’s not a man anymore
sees the change in him but can’t (Run away, run away, run
away) See what became out of her man Fullmoon
Swimming across the bay, the night is gray, so calm today
She doesn’t wanna wait. ”We’ve gotta make the love com-
plete tonight...”
In the mist of the morning he cannot fight anymore Hundred
moons or more, he’s been howling Knock on the door, and
scream that is soon ending Mess on the floor again
She should not lock the open door (Run away, run away,
run away) Fullmoon is on the sky and he’s not a man any-
more She sees the changes in him but can’t (Run away, run
away, run away) See what became out of her man
She should not lock the open door (Run away, run away, run
away) Fullmoon is on the sky and he’s not a man anymore
sees the changes in him but can’t (Run away, run away, run
away) See what became out of her darling man
She should not lock the open door (Run away, run away, run
away) Fullmoon is on the sky and he’s not a man anymore
See what became out of her man
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